Affiliation:
1. Sun Yat-sen University
Abstract
We propose a scheme to entangle Silicon-Vacancy (SiV) centers embedded in a diamond acoustic waveguide. These SiV centers interact with acoustic modes of the waveguide via strain-induced coupling. Through Morris-Shore transformation, the Hilbert space of this hybrid quantum system can be factorized into a closed subspace in which we can deterministically realize the symmetrical Dicke states between distant SiV centers with high fidelity. In addition, the generation of entangled Dicke states can be controlled by manipulating the strength and frequency of the driving field applied on SiV centers. This protocol provides a promising way to prepare multipartite entanglement in spin-phonon hybrid systems and could have broad applications for future quantum technologies.
Funder
Fundamental Research Funds for the Central Universities
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献