Affiliation:
1. University of Chinese Academy of Sciences
Abstract
Multi-mode converters, which can achieve spatial mode conversion in multimode waveguide, play a key role in multi-mode photonics and mode-division multiplexing (MDM). However, rapid design of high-performance mode converters with ultra-compact footprint and ultra-broadband operation bandwidth is still a challenge. In this work, through combining adaptive genetic algorithm (AGA) and finite element simulations, we present an intelligent inverse design algorithm and successfully designed a set of arbitrary-order mode converters with low excess losses (ELs) and low crosstalk (CT). At the communication wavelength of 1550 nm, the footprint of designed TE0–n (n = 1, 2, 3, 4) and TE2–n (n = 0, 1, 3, 4) mode converters are only 1.8 × 2.2 µm2. The maximum and minimum conversion efficiency (CE) is 94.5% and 64.2%, and the maximum and minimum ELs/CT are 1.92/-10.9 dB and 0.24/-20 dB, respectively. Theoretically, the smallest bandwidth for simultaneously achieving ELs ≤ 3 dB and CT ≤ -10 dB exceeds 70 nm, which can be as large as 400 nm for the case of low-order mode conversion. Moreover, the mode converter in conjunction with a waveguide bend allows for mode-conversion in ultra-sharp waveguide bends, significantly increasing the density of on-chip photonic integration. This work provides a general platform for the realization of mode converters and has good prospect in application of multimode silicon photonics and MDM.
Funder
National Natural Science Foundation of China
Beijing Nova Program
Beijing Municipal Natural Science Foundation
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献