LKG-Net: lightweight keratoconus grading network based on corneal topography

Author:

Gao SongORCID,Chen Yingjie1,Shi FeiORCID,Peng Yuanyuan,Xu ChenanORCID,Chen Zhongyue,Zhu WeifangORCID,Xu Xin,Tang Wei,Tan Zhiwei,Xu Yue1,Ren Yaru2,Zhang Xiaofeng12,Chen Xinjian

Affiliation:

1. Dushu Lake Hospital Affiliated to Soochow University

2. Soochow University-Affiliated First Hospital

Abstract

Keratoconus (KC) is a noninflammatory ectatic disease characterized by progressive thinning and an apical cone-shaped protrusion of the cornea. In recent years, more and more researchers have been committed to automatic and semi-automatic KC detection based on corneal topography. However, there are few studies about the severity grading of KC, which is particularly important for the treatment of KC. In this work, we propose a lightweight KC grading network (LKG-Net) for 4-level KC grading (Normal, Mild, Moderate, and Severe). First of all, we use depth-wise separable convolution to design a novel feature extraction block based on the self-attention mechanism, which can not only extract rich features but also reduce feature redundancy and greatly reduce the number of parameters. Then, to improve the model performance, a multi-level feature fusion module is proposed to fuse features from the upper and lower levels to obtain more abundant and effective features. The proposed LKG-Net was evaluated on the corneal topography of 488 eyes from 281 people with 4-fold cross-validation. Compared with other state-of-the-art classification methods, the proposed method achieves 89.55% for weighted recall (W_R), 89.98% for weighted precision (W_P), 89.50% for weighted F1 score (W_F1) and 94.38% for Kappa, respectively. In addition, the LKG-Net is also evaluated on KC screening, and the experimental results show the effectiveness.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3