Abstract
Nonlinear atomic media are promising substitutes for spatial light modulators (SLMs) owing to the high tunability and fast response. We demonstrate the generation of high-order Bessel-like beam based on cross-phase modulation in 85Rb atoms. The atomic medium, whose refractive index is spatially modulated by the focused Gaussian pump beam, acts as a nonlinear focusing lens for the Laguerre-Gaussian probe beam. As a result, the probe beam carries the nonlinear phase shift and is converted into a Bessel-like mode in far-field diffraction. The superior self-healing ability of the generated high-order Bessel-like beam is verified by inserting an obstruction in the beam path, and its high tunability is investigated in terms of the pump beam power and vapor temperature. Furthermore, this novel beam is used in an obstruction-immune rotation sensor to measure the angular velocity. Nonlinear atomic medium as a novel SLM promises considerable application prospects in modulating the light field structure.
Funder
National Natural Science Foundation of China
Program for Sanjin Scholars of Shanxi Province
Key Research and Development Program of Shanxi Province for International Cooperation
Shanxi "1331 Project"
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献