Predicting the orbital angular momentum of atmospheric turbulence for OAM-based free-space optical communication

Author:

Hu Wuli1,Yang Jiaxiong1,Zhu Long1ORCID,Wang Andong1

Affiliation:

1. Chongqing University of Posts and Telecommunications

Abstract

Spatial modes of light are susceptible to distortion, particularly by the presence of turbulence in atmospheric free-space links. The scattering of one mode to another disrupts the orthogonality among distinct orbital angular momentum (OAM) modes, leading to modal crosstalk between multiple channels. To enhance the performance of OAM-multiplexed free-space optical (FSO) communication, a convolutional neural network (CNN)-based turbulent OAM approach is proposed for compensating turbulence, with a specific focus on predicting the OAM of turbulence itself. An operator approach is utilized to extract the OAM component of atmospheric turbulence and the CNN is trained to predict the turbulent OAM coefficients. By employing the proposed network, the received power of the OAM-based FSO link can be improved by more than 10 dB under weak to strong turbulence conditions. Compared to Zernike modes, the turbulent OAM modes characterize most of the turbulence information using only a small number of orders. After compensation, when the strong turbulence strength D/r0 = 4, the received power of the transmitted beams with turbulent OAM improves by 4 dB over that with Zernike. Additionally, the crosstalk of multiplexed channels with turbulent OAM is reduced by 10 dB over that with Zernike under varying turbulence conditions.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Chongqing

Science and Technology Research Program of Chongqing Municipal Education Commission

Chongqing Graduate Student Research Innovation Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3