Dual-function photonic spin Hall effect sensor for high-precision refractive index sensing and graphene layer detection

Author:

Liu Siyuan,Yin Xiaoxing,Zhao Hongxin

Abstract

In this paper, a photonic spin Hall effect (PSHE) sensor for high-precision refractive index (RI) detection and graphene layer number detection is proposed. Numerical analysis is performed by the transfer matrix method. The graphene material is introduced into the layered topology to stimulate the generation of PSHE phenomenon, and both H polarization and V polarization displacements occur simultaneously. The effects of parameters such as chemical potential, relaxation time, and external temperature on the PSHE shift are also discussed. The displacement of H polarization can be used for RI detection, and the measurement range (MR), sensitivity (S), figure of merit (FOM), and detection limit (DL) are 1.1-1.5, 127.85 degrees/RIU, 2412, and 2.08×10−5, respectively. The superior sensing performance provides a theoretical possibility for the detection of solids, liquids, and gases. The shift characteristic of V polarization is appropriate for detecting the number of layers in graphene, with a MR and S of 1-9 layers and 4.54 degrees/layer. The impacts of dielectric loss on sensor performance are also considered. We hope that the proposed PSHE multifunctional sensor can improve a theoretical idea for novel sensor design.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3