Stack, seal, evacuate, draw: a method for drawing hollow-core fiber stacks under positive and negative pressure

Author:

Murphy Leah R.ORCID,Yerolatsitis Stephanos1ORCID,Birks Tim A.,Stone James M.

Affiliation:

1. the University of Central Florida

Abstract

The two-stage stack and draw technique is an established method for fabricating microstructured fibers, including hollow-core fibers. A stack of glass elements of around a meter in length and centimeters in outer diameter forms the first stage preform, which is drawn into millimeter scale canes. The second stage preform is one of the canes, which is drawn, under active pressure, into microscopic fiber. Separately controlled pressure lines are connected to different holes or sets of holes in the cane to control the microstructure of the fiber being drawn, often relying on glues or other sealants to isolate the differently-pressured regions. We show that the selective fusion and collapse of the elements of the stack, before it is drawn to cane or fiber, allows the stack to be drawn directly under differential pressure without introducing a sealant. Three applications illustrate the advantages of this approach. First, we draw antiresonant hollow-core fiber directly from the stack without making a cane, allowing a significantly longer length of fiber to be drawn. Second, we fabricate canes under pressure, such that they are structurally more similar to the final fiber. Finally, we use the method to fabricate new types of microstructured resonators with a non-circular cross-section.

Funder

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3