Separating single- and multiple-scattering components in laser speckle contrast imaging of tissue blood flow

Author:

Zhang Yifan1,Wang Cheng1,Tong Shanbao1,Miao Peng1ORCID

Affiliation:

1. Shanghai Jiao Tong University

Abstract

Random matrix theory provides new insights into multiple scattering in random media. In a recent study, we demonstrated the statistical separation of single- and multiple-scattering components based on a Wishart random matrix. The first- and second-order moments were estimated with a Wishart random matrix constructed using dynamically backscattered speckle images. In this study, this new strategy was applied to laser speckle contrast imaging (LSCI) of in vivo blood flow. The random matrix-based method was adopted and parameterized using electric field Monte Carlo simulations and in vitro blood flow phantom experiments. The new method was further applied to in vivo experiments, demonstrating the benefits of separating the single- and multiple-scattering components, and the method was compared with the traditional temporal laser speckle contrast analysis (LASCA) method. More specifically, the new method separates the stimulus-induced functional changes in blood flow and tissue perfusion in the superficial (<2l t , l t is the transport mean free path) and deep layers (1l t  ∼ 7l t ), extending LSCI to the evaluation of functional and pathological changes.

Funder

Med-X Research Fund of Shanghai Jiao Tong University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3