Abstract
In biomedical studies, Mueller matrix polarimetry is gaining increasing attention because it can comprehensively characterize polarization-related vectorial properties of the sample, which are crucial for microstructural identification and evaluation. For backscattering Mueller matrix polarimetry, there are two photon coordinate selection conventions, which can affect the following Mueller matrix parameters calculation and information acquisition quantitatively. In this study, we systematically analyze the influence of photon coordinate system selection on the backscattering Mueller matrix polarimetry. We compare the Mueller matrix elements in the right-handed-nonunitary and non-right-handed-unitary coordinate systems, and specifically deduce the changes of Mueller matrix polar decomposition, Mueller matrix Cloude decomposition and Mueller matrix transformation parameters widely used in backscattering Mueller matrix imaging as the photon coordinate system varied. Based on the theoretical analysis and phantom experiments, we provide a group of photon coordinate system transformation invariants for backscattering Mueller matrix polarimetry. The findings presented in this study give a crucial criterion of parameters selection for backscattering Mueller matrix imaging under different photon coordinate systems.
Funder
Shenzhen Key Fundamental Research Project
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献