Flexible and transparent metadevices for terahertz, microwave, and infrared multispectral stealth based on modularization design

Author:

Sun Bing,Huang Lirong,Ding Jifei,Luo Yi,Zhang Yuzheng,Li Runze1,Wang XiaochuanORCID,Wen Qiye2ORCID,Xiao Shiyi1ORCID

Affiliation:

1. Shanghai University

2. University of Electronic Science and Technology of China

Abstract

Multispectral stealth technology including terahertz (THz) band will play an increasingly important role in modern military and civil applications. Here, based on the concept of modularization design, two kinds of flexible and transparent metadevices were fabricated for multispectral stealth, covering the visible, infrared (IR), THz, and microwave bands. First, three basic functional blocks for IR, THz, and microwave stealth are designed and fabricated by using flexible and transparent films. And then, via modular assembling, that is, by adding or removing some stealth functional blocks or constituent layers, two multispectral stealth metadevices are readily achieved. Metadevice 1 exhibits THz-microwave dual-band broadband absorption, with average measured absorptivity of 85% in 0.3-1.2 THz and higher than 90% in 9.1-25.1 GHz, suitable for THz-microwave bi-stealth. Metadevice 2 is for IR and microwave bi-stealth, with measured absorptivity higher than 90% in 9.7-27.3 GHz and low emissivity around 0.31 in 8-14 µm. Both metadevices are optically transparent and able to maintain good stealth ability under curved and conformal conditions. Our work offers an alternative approach for designing and fabricating flexible transparent metadevices for multispectral stealth, especially for applications in nonplanar surfaces.

Funder

Natural Science Foundation of Shanghai

Area Research and Development Program of Hubei Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3