Experimental realization of efficient nondegenerate four-wave mixing in cesium atoms

Author:

Wu Jinze12ORCID,Guo Miaojun1,Zhou Haitao3ORCID,Liu Jinhong4,Li Jinhong1ORCID,Zhang Junxiang2

Affiliation:

1. Taiyuan University of Science and Technology

2. Zhejiang University

3. Shanxi University

4. Taiyuan Institute of Technology

Abstract

Nondegenerate four-wave mixing (FWM) in diamond-type atomic systems has important applications in a wide range of fields, including quantum entanglement generation, frequency conversion, and optical information processing. Although the efficient self-seeded nondegenerate FWM with amplified spontaneous emission (ASE) has been realized extensively, the seeded nondegenerate FWM without ASE is inefficient in reported experiments so far. Here we present the experimental realization of the seeded nondegenerate FWM in cesium atoms with a significantly improved efficiency. Specifically, with two pump lasers at 852 and 921 nm and a seed laser at 895 nm, a continuous-wave laser at 876 nm is efficiently generated via FWM in a cesium vapor cell with a power up to 1.2 mW, three orders of magnitude larger than what has been achieved in previous experiments. The improvement of the efficiency benefits from the exact satisfaction of the phase-matching condition realized by an elaborately designed setup. Our results may find applications in the generation of squeezing and entanglement of light via nondegenerate FWM.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Shanxi Provincial Central Government Guides Local Science and Technology Development Fund Project

Natural Science Foundation of Shanxi Province

China Postdoctoral Science Foundation

Taiyuan University of Science and Technology Scientific Research Initial Funding

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3