Affiliation:
1. Aerospace Information Research Institute of Chinese Academy of Sciences
2. University of Chinese Academy of Sciences
3. Chinese Academy of Sciences
Abstract
Inverse synthetic aperture ladar (ISAL) has the capability to achieve high-resolution imaging of long-distance targets in a short time because of the laser’s short wavelength. However, the unexpected phases introduced by target vibration in the echo can cause defocused imaging results of the ISAL. How to estimate the vibration phases has always been one of the difficulties in ISAL imaging. In this paper, in view of the echo’s low signal-to-noise ratio, the orthogonal interferometry method based on time-frequency analysis is proposed to estimate and compensate the vibration phases of ISAL. The method can effectively suppress the influence of noise on the interferometric phases and accurately estimate vibration phases using multichannel interferometry in the inner view field. The effectiveness of the proposed method is validated through simulations and experiments, including a 1200 m distance cooperative vehicle experiment and a 250 m distance noncooperative unmanned aerial vehicle experiment.
Funder
Key Deployment Projects of Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献