COVID-19 screening with digital holographic microscopy using intra-patient probability functions of spatio-temporal bio-optical attributes

Author:

O’Connor Timothy1ORCID,Javidi BahramORCID

Affiliation:

1. University of Connecticut

Abstract

We present an automated method for COVID-19 screening using the intra-patient population distributions of bio-optical attributes extracted from digital holographic microscopy reconstructed red blood cells. Whereas previous approaches have aimed to identify infection by classifying individual cells, here, we propose an approach to incorporate the attribute distribution information from the population of a given human subjects’ cells into our classification scheme and directly classify subjects at the patient level. To capture the intra-patient distribution information in a generalized way, we propose an approach based on the Bag-of-Features (BoF) methodology to transform histograms of bio-optical attribute distributions into feature vectors for classification via a linear support vector machine. We compare our approach with simpler classifiers directly using summary statistics such as mean, standard deviation, skewness, and kurtosis of the distributions. We also compare to a k-nearest neighbor classifier using the Kolmogorov-Smirnov distance as a distance metric between the attribute distributions of each subject. We lastly compare our approach to previously published methods for classification of individual red blood cells. In each case, the methodology proposed in this paper provides the highest patient classification performance, correctly classifying 22 out of 24 individuals and achieving 91.67% classification accuracy with 90.00% sensitivity and 92.86% specificity. The incorporation of distribution information for classification additionally led to the identification of a singular temporal-based bio-optical attribute capable of highly accurate patient classification. To the best of our knowledge, this is the first report of a machine learning approach using the intra-patient probability distribution information of bio-optical attributes obtained from digital holographic microscopy for disease screening.

Funder

Office of the Vice President of Research, University of Connecticut

U.S. Department of Education

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3