Perfectly conducting cylinder covered by two layers of dielectric separated by an infinitely thin impedance layer: multiple suppression of the scattered field harmonics (rigorous approach)

Author:

Shestopalov Yury1ORCID,Matekovits Ladislau23ORCID

Affiliation:

1. University of Gävle

2. Politehnica University Timisoara

3. Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni

Abstract

We propose and develop a novel rigorous technique that enables one to obtain the explicit numerical values of parameters at which several lowest-order harmonics of the scattered field are suppressed. This provides partial cloaking of the object, a perfectly conducting cylinder of circular cross section covered by two layers of dielectric separated by an infinitely thin impedance layer, a two-layer impedance Goubau line (GL). The developed approach is a rigorous method that enables one to obtain in the closed form (and without numerical calculations) the values of parameters providing the cloaking effect, achieved particularly in terms of the suppression of several scattered field harmonics and variation of the sheet impedance. This issue constitutes the novelty of the accomplished study. The elaborated technique could be applied to validate the results obtained by commercial solvers with virtually no limitations on the parameter ranges, i.e., use it as a benchmark. The determination of the cloaking parameters is straightforward and does not require computations. We perform comprehensive visualization and analysis of the achieved partial cloaking. The developed parameter-continuation technique enables one to increase the number of the suppressed scattered-field harmonics by appropriate choice of the impedance. The method can be extended to any dielectric-layered impedance structures possessing circular or planar symmetry.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3