Abstract
The fidelity of photonic storage and retrieval is an essential criterion in long-distance all-optical network nodes. However, the recovered signals from optical memories based on the photon echo (PE) protocol are accompanied by undesired waveform variation and temporal drift. In this study, we use a numerical calculation method with spatiotemporal separation to investigate the essence of signal distortion. The results show that the asynchronous evolution of the macroscopic population difference and the macroscopic dipole moment with time is responsible for echo signal real distortion caused by phase shifts at the in-phase point of the recorded information. The constructive interference of the dipoles at the moment of reaching the in-phase point induces the photon emission, and this point with a nonspecific phase will be naturally accompanied by waveform changes, a small amount of time advance and delay of the PE signal, which is actually a false signal distortion. Such radiation mechanism of the inhomogeneous broadening media provides a perspective to accurately and correctly recognize the temporal drift and waveform variation of the recovered optical signal.
Funder
Natural Science Foundation of Tianjin City
Tianjin Innovation and Entrepreneurship Training Program
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献