Axial clearance measurement method based on wavelength division multiplexing with all-fiber microwave photonic mixing

Author:

Yu Zhenxin,Duan Fajie,Fu XiaoORCID,Niu Guangyue,Bao Ruijia,Wu Jingxin1

Affiliation:

1. Hunan Aviation Powerplant Research Institute

Abstract

Rotor-stator axial clearance plays a pivotal role in ensuring the safety and efficiency of major rotating machinery. This paper introduces an innovative clearance measurement method based on wavelength division multiplexing (WDM) combined with all-fiber microwave photonic mixing. The method is distinguished by large measurement range, high accuracy and low drift. The WDM-based common optical path structure is established. A comprehensive theoretical model of axial clearance drift determined by wavelength and temperature is developed based on the thermo-optic effect of optical fiber material. To efficiently separate measurement and reference light at the probe, the optical design for a compact optical bandpass filter (OBPF) fiber sensor probe is proposed. The performance of the method is substantiated by simulations and experiments. The results demonstrate an accuracy of better than 2.8µm over a 23.5 mm range, surpassing existing methods. The method's capability to mitigate temperature-induced drift is further confirmed through high-temperature drift and comparative experiments.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Chinese Aeronautical Establishment

China Postdoctoral Science Foundation

Young Teacher Research Initiation Project of State Key Laboratory

Joint Fund of Ministry of Education for Equipment Pre-research

National Defense Science and Technology Innovation Fund of the Chinese Academy of Sciences

Special Project for Research and Development in Key areas of Guangdong Province

Fok Ying Tung Education Foundation

Young Elite Scientists Sponsorship Program by CAST

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3