Sunglint reflection facilitates performance of spaceborne UV sensor in oil spill detection

Author:

Suo Ziyi1ORCID,Li Ling,Lu YingchengORCID,Liu Jianqiang2,Ding Jing2,Ju Weimin1,Li Manchun1,Yin Dayi3,Xu Feifei3

Affiliation:

1. Nanjing University

2. Ministry of Natural Resources

3. Chinese Academy of Sciences

Abstract

Ultraviolet Imager (UVI) onboard Haiyang-1C/D (HY-1C/D) satellites has been providing ultraviolet (UV) data to detect marine oil spills since 2018. Although the scale effect of UV remote sensing has been preliminarily interpreted, the application characteristics of spaceborne UV sensors with medium spatial resolution in oil spill detection deserve further investigation, especially the role of sunglint in the process of detection. In this study, the performance of the UVI is thoroughly assessed by the following aspects: image features of oils under sunglint, sunglint requirement for spaceborne UV detection of oils, and the stability of the UVI signal. The results indicate that in UVI images, it is sunglint reflection that determines the image features of spilled oils, and the appearance of sunglint can strengthen the contrast between oils and seawater. Besides, the required sunglint strength in spaceborne UV detection has been deduced to be 10−3 - 10−4 sr-1, which is higher than that in the VNIR wavelengths. Moreover, uncertainties in the UVI signal can meet the demand to discriminate between oils and seawater. The above results can confirm the capability of the UVI and the critical role of sunglint in spaceborne UV detection of marine oil spills, and provide new reference for spaceborne UV remote sensing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Dragon 5 Cooperation Programme

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3