Affiliation:
1. Chinese Academy of Sciences
2. University of Science and Technology of China
Abstract
In a photon-counting fiber Bragg grating (FBG) sensing system, a shorter probe pulse width reaches a higher spatial resolution, which inevitably causes a spectrum broadening according to the Fourier transform theory, thus affecting the sensitivity of the sensing system. In this work, we investigate the effect of spectrum broadening on a photon-counting FBG sensing system with a dual-wavelength differential detection method. A theoretical model is developed, and a proof-of-principle experimental demonstration is realized. Our results give a numerical relationship between the sensitivity and spatial resolution at the different spectral widths of FBG. In our experiment, for a commercial FBG with a spectral width of 0.6 nm, an optimal spatial resolution of 3 mm and a corresponding sensitivity of 2.03 nm−1 can be achieved.
Funder
Sichuan Science and Technology Program
Innovation Program for Quantum Science and Technology
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 光电量子器件研究进展(封面文章·特邀);Infrared and Laser Engineering;2024
2. Optoelectronic Devices for Quantum Information Processing;Optoelectronics - Recent Advances [Working Title];2023-10-27