Thermo-elastic gigahertz-frequency oscillator through surface acoustic wave-silicon photonics

Author:

Priel Maayan,Kumar Bag SaawanORCID,Slook Matan,Dokhanian Leroy,Shafir Inbar1,Hen Mirit,Katzman Moshe,Grunwald Etai,Munk Dvir,Feldberg Moshe,Sharabani Tali,Inbar Naor2,Bashan Gil,Zadok AviORCID

Affiliation:

1. NRC

2. Tower Semiconductors

Abstract

Opto-electronic oscillators are sources of microwave-frequency tones that may reach very low noise levels. Much effort is being dedicated to the realization of oscillators based on photonic integrated devices. In this work, we propose and demonstrate a thermo-elastic opto-electronic oscillator at 2.213 GHz frequency based on a standard silicon-photonic integrated circuit. A microwave-frequency electrical signal modulates an optical pump wave carrier. The modulated waveform launches surface acoustic waves in a silicon-on-insulator substrate, through absorption in a metallic grating and thermo-elastic actuation. The waveform is reconverted to the optical domain through photoelastic modulation of an optical probe wave carrier in a standard racetrack resonator waveguide. Both the thermo-elastic actuation and the photoelastic modulation are radio-frequency selective. The output probe wave is detected, and the receiver voltage is amplified and fed back to modulate the optical pump input. Sufficient gain drives the loop into oscillations. The oscillator does not involve piezoelectricity and can be realized on any substrate. Long acoustic delays may be implemented in compact devices. The frequency of operation is scalable to tens of GHz. The principle may be useful in integrated microwave-photonic signal processing and in the elastic analysis of surfaces and thin layers.

Funder

Israel Innovation Authority

H2020 European Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3