Affiliation:
1. University College London
2. Mitsubishi Electric Research Laboratories (MERL)
Abstract
We improve an inverse regular perturbation (RP) model using a machine learning (ML) technique. The proposed learned RP (LRP) model jointly optimizes step-size, gain and phase rotation for individual RP branches. We demonstrate that the proposed LRP can outperform the corresponding learned digital back-propagation (DBP) method based on a split-step Fourier method (SSFM), with up to 0.75 dB gain in a 800 km standard single mode fiber link. Our LRP also allows a fractional step-per-span (SPS) modeling to reduce complexity while maintaining superior performance over a 1-SPS SSFM-DBP.
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献