Affiliation:
1. Tianjin University
2. Third Military Medical University (Army Medical University)
Abstract
The diagnosis of blast-induced traumatic brain injury (bTBI) is of paramount importance for early care and clinical therapy. Therefore, the rapid diagnosis of bTBI is vital to the treatment and prognosis in clinic. In this paper, we reported a new strategy for label-free bTBI diagnosis through serum-based Raman spectroscopy. The Raman spectral characteristics of serum in rat were investigated at 3 h, 24 h, 48 h and 72 h after mild and moderate bTBIs. It has been demonstrated that both the position and intensity of Raman characteristic peaks exhibited apparent differences in the range of 800-3000cm−1 compared with control group. It could be inferred that the content, structure and interaction of biomolecules in the serum were changed after blast exposure, which might help to understand the neurological syndromes caused by bTBI. Furthermore, the control group, mild and moderate bTBIs at different times (a total of 9 groups) were automatically classified by combining principal component analysis and four machine learning algorithms (quadratic discriminant analysis, support vector machine, k-nearest neighbor, neural network). The highest classification accuracy, sensitivity and precision were up to 95.4%, 95.9% and 95.7%. It is suggested that this method has great potential for high-sensitive, rapid, and label-free diagnosis of bTBI.
Funder
China National Funds for Distinguished Young Scientists
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献