Inverse design and optimization of an aperiodic multi-notch fiber Bragg grating using neural networks

Author:

Yu QingshanORCID,Norris Barnaby R. M.1ORCID,Edvell Göran,Luo Liguo,Bland-Hawthorn JossORCID,Leon-Saval Sergio G.ORCID

Affiliation:

1. The University of Sydney

Abstract

Recent developments in the application of aperiodic fiber Bragg gratings (AFBGs) in astrophotonics, such as AFBG for astronomical near-infrared OH suppression and gas detection based on cross-correlation spectroscopy, have illuminated the problem that the optimization for AFBG with certain fabrication constraints has not been fully investigated and solved. Previous solutions will either sacrifice part of the spectral features or consume a significant amount of computation resources and time. Inspired by recently successful applications of artificial neural networks (ANNs) in photonics inverse design, we develop an AFBG optimization approach employing ANNs in conjunction with genetic algorithms (GAs) for the first time, to the best of our knowledge. The approach maintains the spectral notch depths and preserves the fourth-order super-Gaussian spectral features with improvements of interline loss by ∼100 times. We also implement, to our knowledge, the first inverse scattering neural network based on a tandem architecture for AFBG, using a first-order Gaussian notch profile. The neural network successfully converges but has a poor predictive capability for the phase part of the design. We discuss possible ways to overcome these limitations.

Publisher

Optica Publishing Group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3