Affiliation:
1. Nanjing University of Aeronautics and Astronautics
2. Institute of Artificial Intelligence
Abstract
Photoacoustic tomography (PAT) system can reconstruct images of biological tissues with high resolution and contrast. However, in practice, the PAT images are usually degraded by spatially variant blur and streak artifacts due to the non-ideal imaging conditions and chosen reconstruction algorithms. Therefore, in this paper, we propose a two-phase restoration method to progressively improve the image quality. In the first phase, we design a precise device and measuring method to obtain spatially variant point spread function samples at preset positions of the PAT system in image domain, then we adopt principal component analysis and radial basis function interpolation to model the entire spatially variant point spread function. Afterwards, we propose a sparse logarithmic gradient regularized Richardson-Lucy (SLG-RL) algorithm to deblur the reconstructed PAT images. In the second phase, we present a novel method called deringing which is also based on SLG-RL to remove the streak artifacts. Finally, we evaluate our method with simulation, phantom and in vivo experiments, respectively. All the results show that our method can significantly improve the quality of PAT images.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Anhui Provincial Department of Science and Technology
University of Science and Technology of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献