Abstract
The high power all-solid-state continuous wave single-frequency laser is a significant source for science and application due to good beam quality and low noise. However, the output power of the laser is usually restricted by the harmful thermal lens effect of the solid gain medium. To address this issue, we develop a self-mode-matching compact all-solid-state laser with a symmetrical ring resonator in which four end-pumped Nd:YVO4 laser crystals are used for both laser gain media and mode-matching elements. With this ingenious design, the thermal lens effect of every laser crystal can be controlled and the dynamic of the designed laser including the stability range and the beam waist sizes at crystals can be manipulated only by adjusting the pump power used on each laser gain medium. Under an appropriate combination of pump powers on four crystals, self-mode-matching in a resonator is realized. A stable CW single-frequency at 1064 nm with 140-W power, 102-kHz linewidth, and low intensity noise is obtained. The presented design paves an effective way to further scale-up the output power of a compact laser by employing more pieces of gain media.
Funder
National Natural Science Foundation of China
Applied Basic Research Program of Shanxi Province
Key Research and Development Program of Shanxi Province
Program for the Innovative Talents of High Education Institutions of Shanxi
Fund for Shanxi "1331 Project" Key Subjects Construction
Research Project Supported by Shanxi Scholarship Council of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献