Abstract
Brillouin microscopy has recently emerged as a powerful tool for mechanical property measurements in biomedical sensing and imaging applications. Impulsive stimulated Brillouin scattering (ISBS) microscopy has been proposed for faster and more accurate measurements, which do not rely on stable narrow-band lasers and thermally-drifting etalon-based spectrometers. However, the spectral resolution of ISBS-based signal has not been significantly explored. In this report, the ISBS spectral profile has been investigated as a function of the pump beam’s spatial geometry, and novel methodologies have been developed for accurate spectral assessment. The ISBS linewidth was found to consistently decrease with increasing pump-beam diameter. These findings provide the means for improved spectral resolution measurements and pave the way to broader applications of ISBS microscopy.
Funder
U.S. Food and Drug Administration
Cancer Prevention and Research Institute of Texas
Office of Naval Research
Welch Foundation
U.S. Army Medical Command
Air Force Office of Scientific Research
National Institutes of Health
National Science Foundation
Biomedical Advanced Research and Development Authority
National Aeronautics and Space Administration
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献