Abstract
All-solid-state continuous-wave (CW) single-frequency tunable Ti:sapphire (Ti:S) laser is an important source in quantum optics and atomic physics. However, intracavity etalon (IE) locking is easily influenced by the intensity noise of the pump source in the low frequency band. In order to address this issue, a differential detector with dual-photodiodes (PDs) is designed and employed in the experiment. Both PDs are used to detect the lights of the pump source and the built Ti:S laser, respectively. As a result, the influence of the intensity noise of the pump source on the stability of the IE locking is successfully eliminated and the IE is stably locked to the oscillating longitudinal-mode of the laser. On this basis, a stable CW single-frequency tunable Ti:S laser is realized. The presented method is beneficial to attain a stable single-frequency tunable laser with immunity to the intensity noise of the pump source.
Funder
National Natural Science Foundation of China
Applied Basic Research Project of Shanxi Province, China
Key R&D Program of Shanxi Province
Program for the Innovative Talents of High Education Institutions of Shanxi
Fund for Shanxi "1331 Project" Key Subjects Construction
Research Project Supported by Shanxi Scholarship Council of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献