Abstract
Fourier ptychographic microscopy (FPM) is a technique to reconstruct a high-resolution image from a set of low-resolution images captured with different illumination angles, which is susceptible to ambient noise, system noise, and weak currents when acquiring large-angle images, especially dark field images. To effectively address the noise problem, we propose an adaptive denoising algorithm based on a LED-based temporal variant noise model. Taking the results of blank slide samples as the reference value of noise, and analyzing the distribution of noise, we establish a statistical model for temporal variant noise, describing the relationship between temporal noise and LED spatial location. Based on this model, Gaussian denoising parameters are selected to adaptively denoise the images with different locations, with which high-resolution images can be reconstructed. Compared with other methods, the experimental results show that the proposed method effectively suppresses the noise, recovers more image details, increases the image contrast, and obtains better visual effects. Meanwhile, better objective evaluation also mirrors the advantages of the proposed algorithms.
Funder
Natural Science Foundation of Zhejiang Province
Graduate Scientific Research Foundation of Hangzhou Dianzi University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献