Fused feature extract method for Φ-OTDR event recognition based on VGGish transfer learning

Author:

Gan Jiaqi123,Xiao Yueyu123ORCID,Zhang Andong123

Affiliation:

1. Key Laboratory of Specialty Fiber Optics and Optical Access Networks of Shanghai City

2. Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication

3. Institute of Fiber Optics, Shanghai University

Abstract

Thanks to the development of artificial intelligence algorithms, the event recognition of distributed optical fiber sensing systems has achieved high classification accuracy on many deep learning models. However, the large-scale samples required for the deep learning networks are difficult to collect for the optical fiber vibration sensing systems in actual scenarios. An overfitting problem due to insufficient data in the network training process will reduce the classification accuracy. In this paper, we propose a fused feature extract method suitable for the small dataset of Φ-OTDR systems. The high-dimensional features of signals in the frequency domain are extracted by a transfer learning method based on the VGGish framework. Combined with the characteristics of 12 different acquisition points in the space, the spatial distribution characteristics of the signal can be reflected. Fused with the spatial and temporal features, the features undergo a sample feature correction algorithm and are used in a SVM classifier for event recognition. Experimental results show that the VGGish, a pre-trained convolutional network for audio classification, can extract the knowledge features of Φ-OTDR vibration signals more efficiently. The recognition accuracy of six types of intrusion events can reach 95.0% through the corrected multi-domain features when only 960 samples are used as the training set. The accuracy is 17.7% higher than that of the single channel trained on VGGish without fine-tuning. Compared to other CNNs, such as ResNet, the feature extract method proposed can improve the accuracy by at least 4.9% on the same dataset.

Funder

Jiangsu Province Industrial Prospect and Key Core Technologies-Key Project

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3