High-Q and tunable analog of electromagnetically induced transparency in terahertz all-dielectric metamaterial

Author:

Hu Yanqi1ORCID,Xiong Yongqian1ORCID

Affiliation:

1. Huazhong University of Science and Technology

Abstract

We propose a novel all-dielectric metamaterial (ADMM), to the best of our knowledge, with a simple structure to achieve the analog of electromagnetically induced transparency (EIT) in the terahertz range. The ADMM is constructed by unit cells with two same silicon bar resonators on a quartz substrate. By breaking the symmetrical array of silicon resonators, the guided-mode resonance can be excited in the substrate, and the destructive interference between a broadband electric-dipole resonance and a narrowband guided-mode resonance gives rise to an EIT-like response. The EIT window can reach a high quality factor (Q-factor) over 1500 by carefully adjusting the asymmetry degree within the unit cell. A dynamically tunable ADMM was further developed by employing photoactive doped silicon. By varying the carrier density of the doped silicon through optical pump, the strength of the EIT-like resonance can be actively modulated, enabling an on-to-off switch of the slow-light effect. The designed ADMM can achieve a high-Q EIT-like response and dynamic modulation, which may give potential applications in bio/chemical sensing, optical switching, and slow-light devices.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3