Author:
Du Xudong,Zhou Chengan,Bai Hongbai,Liu Xingxing
Abstract
Data-driven deep learning frameworks have significantly advanced the development of modern machine learning, and after achieving great success in the field of image, speech, and video recognition and processing, they have also begun to permeate other disciplines such as physics, chemistry, and the discovery of new drugs and new materials. Our work proposes a deep learning-based model consisting of two parts: a forward simulation network that contains a transposed convolutional network, up and down sampling blocks and dense layers can rapidly predict optical responses from metasurface structures, and an inverse design network that contains convolutional neural networks and dense layers can automatically construct metasurface based on the input optical responses. Our model assists in discovering the complex and non-intuitive relationship between the moth-eye metasurface and optical responses, and designs a metasurface with excellent optical properties (ultra-broadband anti-reflection or nonlinear function of reflectivity), while avoiding traditional time-consuming case-by-case numerical simulations in the metasurface design. This work provides a fast, practical, and robust method to study complex light-matter interactions and to accelerate the demand-based design of nanophotonic devices, opening a new avenue for the development of real nanophotonic applications.
Funder
Natural Science Foundation of Fujian Province
Education and Scientific 313 Research Foundation for Young Teachers in Fujian Province, China
Subject
Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献