Deep learning-enabled anti-ambient light approach for fringe projection profilometry

Author:

Zhang Ruihu,Duan MinghuiORCID,Fan Xin,Zheng YabingORCID,Sun ZhengORCID,Zheng Jinjin,Jin YiORCID

Abstract

Achieving high-quality surface profiles under strong ambient light is challenging in fringe projection profilometry (FPP) since ambient light inhibits functional illumination from exhibiting sinusoidal stripes with high quantization levels. Conventionally, large-step phase shifting approaches are presented to enhance the anti-interference capability of FPP, but the image acquisition process in these approaches is highly time-consuming. Inspired by the promising performance of deep learning in optical metrology, we propose a deep learning-enabled anti-ambient light (DLAL) approach that can help FPP extract phase distributions from a single fringe image exposed to unbalanced lighting. In this work, the interference imposed by ambient light on FPP is creatively modeled as ambient light-induced phase error (ALPE). Guided by the ALPE model, we generate the dataset by precisely adjusting the stripe contrast before performing active projection, overcoming the challenge of collecting a large sample of fringe images with various illumination conditions. Driven by the novel dataset, the generated deep learning model can effectively suppress outliers among surface profiles in the presence of strong ambient light, thereby implementing high-quality 3D surface imaging. Experimentally, we verify the effectiveness and adaptability of the proposed DLAL approach in both indoor and outdoor scenarios with strong irradiation.

Funder

National Natural Science Foundation of China

Anhui Science and Technology Department

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3