Quantification of surface layer turbulence using sensible heat values from energy balance versus aerodynamic methods

Author:

Fiorino StevenORCID,Raut Yogendra1ORCID,Schmidt Jaclyn1,Slabaugh Laura,Fourman Blaine1,McCrae Jack,Wilson Benjamin,Bose-Pillai Santasri

Affiliation:

1. Applied Research Solutions

Abstract

Surface layer optical turbulence values in the form of the refractive index structure function C n 2 are often calculated from surface layer temperature, moisture, and wind characteristics and compared to measurements from sonic anemometers, differential temperature sensors, and imaging systems. A key derived component needed in the surface layer turbulence calculations is the sensible heat value. Typically, the sensible heat is calculated using the bulk aerodynamic method that assumes a certain surface roughness and a friction velocity that approximates the turbulence drag on temperature and moisture mixing from the change in the average surface layer vertical wind velocity. These assumptions/approximations generally only apply in free convection conditions. To obtain the sensible heat, a more robust method, which applies when free convection conditions are not occurring, is via an energy balance method such as the Bowen ratio method. The use of the Bowen ratio––the ratio of sensible heat flux to latent heat flux––allows a more direct assessment of the optical turbulence-driving surface layer sensible heat flux than do more traditional assessments of surface layer sensible heat flux. This study compares surface layer C n 2 values using sensible heat values from the bulk aerodynamic and energy balance methods to quantifications from sonic anemometers posted at different heights on a sensor tower. The research shows that the sensible heat obtained via the Bowen ratio method provides a simpler, more reliable, and more accurate way to calculate surface layer C n 2 values than what is required to make such calculations from bulk aerodynamic method-obtained sensible heat.

Funder

U.S. Department of Defense

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3