Parameter selection on a multi-exposure fusion method for measuring surfaces with varying reflectivity in microscope fringe projection profilometry

Author:

Du Junlin1,Yang Fan,Guo Hong1,Zhu JiangpingORCID,Zhou PeiORCID

Affiliation:

1. Anshi Technology Co., Ltd.

Abstract

As industrial and scientific advancements continue, the demand for precise measurement of three-dimensional (3D) shapes and surfaces is steadily increasing. However, accurate 3D measurement of certain surfaces, especially those with varying reflectivities, has always been a challenging issue. Multi-exposure fusion methods have shown stable, high-quality measurement results, but the selection of parameters for these methods has largely been based on experience. To address this issue, this paper has improved the multi-exposure fusion method and introduced a guided approach for parameter selection, significantly enhancing the completeness of measurement results. Additionally, a comparative model is developed to experimentally validate the specific impacts of Gaussian window variance, optimal grayscale range, and attenuation factor variance on the integrity of 3D reconstruction. The experimental results demonstrate that under the guidance of the parameter adjustment method proposed in this paper, the multi-exposure fusion for measuring the 3D topography of high-dynamic surfaces improves the restoration coverage from the original 86% (bright areas) and 50% (dark areas) to over 99%. This provides a selection strategy for parameter adjustment guidance in precise measurements based on the multi-exposure method.

Funder

Key Research and Development Program of Sichuan Province

China Postdoctoral Science Foundation

Central Government Guides Local Funds for Science and Technology Development

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3