Manipulation of optical bound states in the continuum in a metal-dielectric hybrid nanostructure

Author:

Xiao Xuan,Lu YanxinORCID,Jiang Jiayi,Chen YihangORCID

Abstract

Optical bound states in the continuum (BICs) are spatially localized states with vanishing radiation, despite their energy embedded in the continuum spectrum of the environment. They are expected to greatly enhance light–matter interaction due to their long lifetime and high quality factor. However, the BICs in all-dielectric structures generally exhibit large mode volumes and their properties are difficult to manipulate. In this paper, we propose a metal–dielectric hybrid nanostructure where a silver film is inserted into the silicon (Si) substrate under the Si nanopillar array. We show that symmetry-protected BIC in this system can couple with surface plasmon polaritons (SPPs) to form a hybridized mode. Compared with previous symmetry-protected BICs in all-dielectric structures, the SPP-coupled BIC has a significantly decreased mode volume, and its corresponding electric field is strongly localized below the Si nanopillars. We also show that the SPP mode makes the original polarization-independent symmetry-protected BIC become polarization-dependent. In addition, we demonstrate that the silver film in the considered structure can induce a metal mirror effect. The destructive interference between the magnetic dipole inside the Si nanopillars and the mirror magnetic dipole in the silver film can lead to the formation of accidental BICs. Our hybrid structure provides a versatile platform for the manipulation of light–matter interaction in the nanoscale.

Funder

Science and Technology Program of Guangzhou

Natural Science Foundation of Guangdong Province

Guangdong Provincial Key Laboratory

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3