High-Q optical resonances with robustness based on the quasi-guided modes in waveguide moiré gratings

Author:

Wang Guangdong,Maqbool EshaORCID,Han ZhanghuaORCID

Abstract

High-Q resonances, especially those with high spectral tunability and large robustness of the Q factors, are always sought in photonic research for enhanced light-matter interactions. In this work, by rotating the 1D ridge grating on a slab waveguide in both the clockwise and counterclockwise directions by a certain angle θ, we show that the original subwavelength lattice can be converted into waveguide moiré gratings (WMGs), with the period increased to a larger value determined by the value of θ. These period-increasing perturbations will cause the First Brillouin Zone (FBZ) of the 1D grating to shrink, and thus convert the non-radiating guided modes with the dispersion band below the light line into quasi-guided modes (QGMs) above the light line, which can be accessed by free space radiations. We present the numerically calculated dispersion band and the Q-values for the QGMs supported by the WMGs with θ = 60°, and demonstrate that high-Q resonances can be achieved in a wide region of the energy-momentum space with the Q-values exhibiting large robustness over wavevectors. As an example of application, we show that the QGMs in the WMGs can be exploited to produce quite high optical gradient forces at different wavenumbers or wavelengths. Our results show that the QGMs supported by the WMGs work as a new type of high-Q resonances and may find prospective applications in various photonic systems.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3