Establishing equivalent circuits of mounted, high-power VCSEL arrays for iToF cameras

Author:

Liu Kangning1,Wang YubingORCID,Zhang Jianwei,Chen Yuqing1,Zhang Mingshi2,Zhang Xing3,Qin Li,Ning Yongqiang,Wang Lijun2

Affiliation:

1. University of Chinese Academy of Sciences

2. Peng Cheng Laboratory

3. Ace Photonics Co., Ltd.

Abstract

Solid-state indirect time-of-flight (iToF) cameras are crucial to numerous short-to-medium-range applications, owing to their advantages in terms of system integrability and long-term reliability. However, due to the low light intensity, the sensing range of iToF cameras is generally limited to a few meters, which hinders their wide applications. Further increasing the sensing range requires not only higher-power laser diodes but also well-designed driver circuits, which are based on prior knowledge of the laser diodes’ equivalent circuits (ECs). However, experimental studies on ECs of a mounted, high-power vertical-cavity surface-emitting laser (VCSEL) array that comprehensively incorporates all parasitic components, especially parasitic stemming from printed circuit boards (PCBs), remain absent. In this Letter, an 850 nm VCSEL array with a 15.3 W peak power and a 581 MHz bandwidth is fabricated, and more importantly, its EC is experimentally established. Leveraging the accurate EC, a compact iToF camera with a sensing range up to 11.50 m is designed. In addition, a modified precision model is proposed to better evaluate the iToF camera’s performance.

Funder

National Key Research and Development Program of China

Science and Technology Development Project of Jilin Province

Changchun Distinguished Young Scholars Program

National Natural Science Foundation of China

International Joint Research Center of Jilin Province

Chinese Academy of Engineering Local Cooperation Project

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3