Affiliation:
1. University of Crete
2. Foundation for Research and Technology Hellas
Abstract
Frequency-domain photoacoustic microscopy (FD-PAM) constitutes a powerful cost-efficient imaging method integrating intensity-modulated laser beams for the excitation of single-frequency photoacoustic waves. Nevertheless, FD-PAM provides an extremely small signal-to-noise ratio (SNR), which can be up to two orders of magnitude lower than the conventional time-domain (TD) systems. To overcome this inherent SNR limitation of FD-PAM, we utilize a U-Net neural network aiming at image augmentation without the need for excessive averaging or the application of high optical power. In this context, we improve the accessibility of PAM as the system’s cost is dramatically reduced, and we expand its applicability to demanding observations while retaining sufficiently high image quality standards.
Funder
FORTH Synergy Project “ANILIMO”
INNOVA-PROTECT
BIOIMAGING-GR
H2020 FETOPEN Project DynAMic
Laserlab-Europe
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献