External field regulation strategies for exciton dynamics in 2D TMDs

Author:

Chen WenweiORCID,Zheng Canghai,Pei Jiajie,Zhan Hongbing1

Affiliation:

1. Fujian Science & Technological Innovation Lab

Abstract

Two-dimensional (2D) transition metal chalcogenides (TMDs) are regarded as promising materials for micro-optoelectronic devices and next-generation logic devices due to their novel optoelectronic properties, such as strong excitonic effects, tunable direct bandgap from visible to near-infrared regions, valley pseudospin degree of freedom, and so on. Recently, triggered by the growing demand to optimize the performance of TMDs devices, external field regulation engineering has attracted great attention. The goal of this operation is to exploit the external fields to control exciton dynamics in 2D TMDs, including exciton formation and relaxation, and to finally achieve high-performance 2D TMDs devices. Although the regulation strategies of exciton dynamics in 2D TMDs have been well explored, the underlying mechanisms of different regulation strategies need to be further understood due to the complex many-body interactions in exciton dynamics. Here, we first give a brief summary of the fundamental processes of exciton dynamics in 2D TMDs and then summarize the main field-regulation strategies. Particular emphasis is placed on discussing the underlying mechanisms of how different field-regulation strategies control varied fundamental processes. A deep understanding of field regulation provides direct guidelines for the integrated design of 2D TMDs devices in the future.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Fuzhou University

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3