Stability of Quasi-Periodic Solitary Pulse Trains In Nonintegrable Hamiltonian Wave Systems

Author:

Arnold J. M.

Abstract

Considerable interest centres at the present time on the problem of approximating the dynamical motion of solitons by an underlying discrete dynamical system. It has recently been demonstrated that the dynamics of N-solitons of the Nonlinear Schrodinger Equation (NSE) is quite well approximated by Complex Toda Lattice Equations (CTLE) in the limit of large separation of almost identical solitons with arbitrary phases [1-4]. The Lagrangian method proposed in [1, 2] is a direct reduction procedure which does not depend on the integrability of the original equations, and is applicable in principle to any Hamiltonian system having sufficiently well behaved solitary waves. Here it is shown that a Lagrangian theory similar to that of Gorshkov-Ostrowski [5] reduces a large class of nonintegrable Hamiltonian wave systems to a double Toda lattice in the limit of large separations of identical solitary pulses, generalising the results of [1-4] quite considerably.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3