Affiliation:
1. Beijing Institute of Technology
2. Chinese Academy of Sciences
Abstract
Large optical flats play a remarkable role in advanced large-aperture optical systems and the testing of the surface shape error is indispensable for the fabrication. The widely adopted Ritchey-Common test for large optical flats will fail without the rigorous test configurations including a large F/# prerequisition and a flat-to-interferometer distance invariance. A virtual-real combination Ritchey-Common interferometry is proposed to avoid the large F/# prerequisition by accurately modelling the optical path in a virtual interferometer. Furthermore, a virtual-real combination iterative algorithm is proposed in this method to break the flat-to-interferometer distance invariance. Measurement experiments for 100 mm and 422 mm aperture flats were performed to demonstrate the feasibility of this method. Compared with a direct testing in a standard Zygo interferometer, the peak to valley (PV) and root mean square (RMS) errors were less than 0.1 λ and 0.01 λ (λ=632.8 nm), respectively, in different Ritchey angles and flat-to-interferometer distances. Further numerical simulations demonstrate that RMS errors for various Zernike aberrations in arbitrary F/# are less than 0.01 λ. This method can break the distance invariance restriction and achieve high accuracy with an arbitrary F/#, thus providing substantial freedom in the design of test configurations to accommodate various test scenarios.
Funder
National Natural Science Foundation of China
Nanjing International Science and Technology cooperation project
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献