Frequency-modulated microwave signal generation by dual-wavelength-injection period-one laser dynamics

Author:

Yu Xiaoyue,Sun Guanqun,Zhang FangzhengORCID,Pan ShilongORCID

Abstract

In this Letter, dual-wavelength-injection period-one (P1) laser dynamics is proposed for the first time, to the best of our knowledge, to generate frequency-modulated microwave signals. By injecting light with two different wavelengths into a slave laser to excite P1 dynamics, the P1 oscillation frequency can be modulated without external control of the optical injection strength. The system is compact and stable. The frequency and bandwidth of the generated microwave signals can be easily adjusted by tuning the injection parameters. Through both simulations and experiments, the properties of the proposed dual-wavelength injection P1 oscillation are revealed, and the feasibility of the frequency-modulated microwave signal generation is verified. We believe that the proposed dual-wavelength injection P1 oscillation is an extension of laser dynamics theory, and the signal generation method is a promising solution for generating broadband frequency-modulated signals with good tunability.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fund of Prospective Layout of Scientific Research for NUAA

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequency-Tunable Narrow Linewidth THz Signal Generation by Semiconductor Lasers Subject to Mutual Optical Injection;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

2. Reconfigurable Frequency-Modulated Microwave Generation Using Multi-Wavelength Optically Injected Semiconductor Laser;2023 Opto-Electronics and Communications Conference (OECC);2023-07-02

3. Frequency-tunable microwave generation with parity–time symmetry period-one laser dynamics;Optics Letters;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3