Affiliation:
1. Guangdong Academy of Sciences
2. Xi’an Jiaotong University
Abstract
In this study, we fabricated and characterized various parallel flip-chip AlGaN-based deep-ultraviolet (DUV) micro-ring LEDs, including changes in ring dimensions as well as the p-GaN-removed region widths at the outer micro-ring, respectively (PRM LEDs). It is revealed that the LED chips with smaller mesa withstand higher current density and deliver considerably higher light output power density (LOPD), under the same proportion of the hole to the entire mesa column (before it is etched into ring) within the limits of dimensions. However, as the ring-shaped mesa decreases, the LOPD begins to decline because of etching damage. Subsequently, at the same external diameter, the optical performance of micro-ring LEDs with varied internal diameters is studied. Meanwhile, the influence of different structures on light extraction efficiency (LEE) is studied by employing a two-dimensional (2D)-finite-difference time-domain (FDTD) method. In addition, the expand of the p-GaN-removed region at the outer micro-ring as well as the corresponding effective light emission region have some influence to LOPD. The PRM-23 LED (with an external diameter of 90 µm, an internal diameter of 22 µm, and a p-GaN-removed region width of 8 µm) has an LOPD of 53.36 W/cm2 with a current density of 650 A/cm2, and an external quantum efficiency (EQE) of 6.17% at 5 A/cm2. These experimental observations provide a comprehensive understanding of the optical and electrical performance of DUV micro-LEDs for future applications.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Guangdong Province
the GDAS’ Project of Science and Technology Development
Subject
Atomic and Molecular Physics, and Optics