Ring geometric effect on the performance of AlGaN-based deep-ultraviolet light-emitting diodes

Author:

Zhao Jie1ORCID,Li Qixin1,Tan Qilong1,Liang Tianhong1,Zhou Wen2,Liu Ningyang1,Chen Zhitao1

Affiliation:

1. Guangdong Academy of Sciences

2. Xi’an Jiaotong University

Abstract

In this study, we fabricated and characterized various parallel flip-chip AlGaN-based deep-ultraviolet (DUV) micro-ring LEDs, including changes in ring dimensions as well as the p-GaN-removed region widths at the outer micro-ring, respectively (PRM LEDs). It is revealed that the LED chips with smaller mesa withstand higher current density and deliver considerably higher light output power density (LOPD), under the same proportion of the hole to the entire mesa column (before it is etched into ring) within the limits of dimensions. However, as the ring-shaped mesa decreases, the LOPD begins to decline because of etching damage. Subsequently, at the same external diameter, the optical performance of micro-ring LEDs with varied internal diameters is studied. Meanwhile, the influence of different structures on light extraction efficiency (LEE) is studied by employing a two-dimensional (2D)-finite-difference time-domain (FDTD) method. In addition, the expand of the p-GaN-removed region at the outer micro-ring as well as the corresponding effective light emission region have some influence to LOPD. The PRM-23 LED (with an external diameter of 90 µm, an internal diameter of 22 µm, and a p-GaN-removed region width of 8 µm) has an LOPD of 53.36 W/cm2 with a current density of 650 A/cm2, and an external quantum efficiency (EQE) of 6.17% at 5 A/cm2. These experimental observations provide a comprehensive understanding of the optical and electrical performance of DUV micro-LEDs for future applications.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Guangdong Province

the GDAS’ Project of Science and Technology Development

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3