Affiliation:
1. University of Chinese Academy of Sciences
Abstract
In this paper, a patch-antenna-array enhanced quantum cascade detector with freely switchable operating modes among mid-wave, long-wave, and dual-color was proposed and discussed. The dual-color absorption occurs in a single active region through an optimized coupled miniband diagonal-transition subbands arrangement, and a successful separation of the operation regimes was realized by two nested antenna arrays with different patch sizes up to room temperature. At 77 K, the 5.7-μm channel achieved a peak responsivity of 34.6 mA/W and exhibited a detectivity of 2.0×1010 Jones, while the 10.0-μm channel achieved a peak responsivity of 87.5 mA/W, giving a detectivity of 5.0×1010 Jones. Under a polarization modulation of the incident light, the minimum cross talk of the mid-wave and the long-wave operating modes was 1:22.5 and 1:7.6, respectively. This demonstration opens a new prospect for multicolor infrared imaging chip integration technology.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences Key Project
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials