Abstract
We demonstrate for the first time that optical rogue waves (RWs) can be generated using a chaotic semiconductor laser with energy redistribution. Chaotic dynamics are numerically generated using the rate equation model of an optically injected laser. The chaotic emission is then sent to an energy redistribution module (ERM) that consists of a temporal phase modulation and a dispersive propagation. The process enables a temporal energy redistribution of the chaotic emission waveforms, where coherent summation of consecutive laser pulses leads to random generation of giant intensity pulses. Efficient generation of optical RWs are numerically demonstrated by varying the ERM operating parameters in the entire injection parameter space. The effects of the laser spontaneous emission noise on the generation of RWs are further investigated. The RW generation approach offers a relatively high flexibility and tolerance in the choice of ERM parameters according to the simulation results.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献