Actively tunable toroidal response in microwave metamaterials

Author:

Wang Hong1,Yu Yingying1,Zeng Rui1,Sun Bo1,Yang Wenxing1ORCID

Affiliation:

1. Yangtze University

Abstract

Toroidal dipole moment has attracted much attention in recent years due to their novel electromagnetic response such as non-reciprocal interactions and unusual low-radiating manifestations. However, most of the previously reported toroidal dipole moment are incapable of real-time control of direction and intensity. In this paper, an actively tunable toroidal metamaterials are proposed to achieve programmable toroidal dipole manipulations with electric control. The intensity and direction of toroidal dipole can be sensitively regulated by electrically controlling the loaded diodes. Our proof-of-concept experiments show that the toroidal dipole could be dynamically switched to the electric and magnetic dipole. Meantime, the direction of toroidal dipole also could be controlled. Experimental and numerical results, in good agreement, demonstrate good performance of the proposed toroidal metamaterials, with potential applications in modulators, sensors, and filters.

Funder

National Natural Science Foundation of China

Science and Technology Research Project of Education Department of Hubei Province

Natural Science Foundation of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3