Soliton-sinc optical pulse propagation in the presence of high-order effects

Author:

Peng Weiliang,Zhang Xiang1,Jing Liqing2,Gao Yanxia2,Deng ZhixiangORCID,Fan Dianyuan,Zhang LifuORCID

Affiliation:

1. South China Normal University

2. Shenzhen University

Abstract

We investigate the propagation dynamics of the soliton-sinc, a kind of novel hybrid pulse, in the presence of higher-order effects with emphasis on the third-order dispersion (TOD) and Raman effects. At variance with the fundamental sech soliton, the traits of the band-limited soliton-sinc pulse can effectively manipulate the radiation process of dispersive waves (DWs) induced by the TOD. The energy enhancement and the radiated frequency tunability strongly depend on the band-limited parameter. A modified phase-matching condition is proposed for predicting the resonant frequency of the DWs emitted by soliton-sinc pulses, which is verified by the numerically calculated results. In addition, Raman-induced frequency shift (RIFS) of the soliton sinc pulse increases exponentially with a decrease of the band-limited parameter. Finally, we further discuss the simultaneous contribution of the Raman and TOD effects to the generation of the DWs emitted from the soliton-sinc pulses. The Raman effect can then either reduce or amplify the radiated DWs depending on the sign of the TOD. These results show that soliton-sinc optical pulses should be relevant for practical applications such as broadband supercontinuum spectra generation as well as nonlinear frequency conversion.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3