Contrast enhancement method in aero thermal radiation images based on cyclic multi-scale illumination self-similarity and gradient perception regularization

Author:

Wang Yu,Sui XiubaoORCID,Wang YihongORCID,Liu Tong,Zhang Chuncheng,Chen Qian

Abstract

In aerospace, the effects of thermal radiation severely affect the imaging quality of infrared (IR) detectors, which blur the scene information. Existing methods can effectively remove the intensity bias caused by the thermal radiation effect, but they have limitations in the ability of enhancing contrast and correcting local dense intensity or global dense intensity. To address the limitations, we propose a contrast enhancement method based on cyclic multi-scale illumination self-similarity and gradient perception regularization solver (CMIS-GPR). First, we conceive to correct for intensity bias by amplifying gradient. Specifically, we propose a gradient perception regularization (GPR) solver to correct intensity bias by directly decomposing degraded image into a pair of high contrast images, which do not contain intensity bias and exhibit inverted intensity directions. However, we find that the GPR fails for dense intensity area due to small gradient of the scene. Second, to cope with the cases of dense intensity, we regard the dense intensity bias as the sum of multiple slight intensity bias. Then, we construct a cyclic multi-scale illumination self-similarity (CMIS) model by using multi-scale Gaussian filters and structural similarity prior to removing the dense intensity layer by layer. The result acts as coarse correction for GPR, which does not need to be overly concerned with whether the result has intensity residuals or not. Finally, the coarse corrected result is input to the GPR module to further correct residual intensity bias by enhancing contrast. Extensive experiments in real and simulated data have demonstrated the superiority of the proposed method.

Funder

The Leading Technology of Jiangsu Basic Research Plan

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3