Large-scale cascading of first-order FBG array in a highly multimode coreless fiber using femtosecond laser for distributed thermal sensing

Author:

Mumtaz FarhanORCID,Zhang BohongORCID,O’Malley Ronald J.1,Huang JieORCID

Affiliation:

1. Missouri University of Science and Technology

Abstract

This research focuses on the performance analysis and characterization of a fiber Bragg gratings (FBGs) array, consisting of 10 first-order FBGs inscribed by a femtosecond (FS) laser in a highly multimode coreless fiber. The study evaluates the FBG array's ability to function as a distributed thermal sensing (DTS) platform, with the coreless fiber chosen as the sensing element due to its immunity to dopant migration at high temperatures. The design of a large cascaded first-order FBG array effectively eliminates unwanted harmonic peaks across a wide spectrum range. In contrast, higher-order FBGs introduce limitations due to the overlapping of Bragg peaks with harmonics. The FBG array's performance is evaluated by measuring the reflection spectrum of each grating at different temperatures, showing a high temperature sensitivity of 15.05 pm/°C at a Bragg wavelength of 1606.3 nm, with a linear response in the temperature range of 24 - 1100 °C. The FBG array was designed for a spatial resolution of 5 mm. A mode scrambler in the sensing network is employed, which suppresses multimodal interference, characterizes FBG peak visibility, and stabilizes the interference spectrum. The stability of the FBG array is also assessed over 24 hrs at 1100 °C, and it is observed to be stable during thermal treatment. Heat treatment at 1100°C improves the signal to noise ratio of the FBG array, demonstrating the robustness and suitability of the proposed FBG array on highly multimode coreless fiber as a potential sensing platform for DTS applications in harsh environmental conditions, overcoming the issues of dopant migration presented by dopes silica optical fibers at high temperatures.

Funder

U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3