Ultrafast magnetic scattering on ferrimagnets enabled by a bright Yb-based soft x-ray source

Author:

Fan G.123,Légaré K.2,Cardin V.2,Xie X.14ORCID,Safaei R.2,Kaksis E.1,Andriukaitis G.1,Pugžlys A.1ORCID,Schmidt B. E.5,Wolf J. P.6,Hehn M.7,Malinowski G.7,Vodungbo B.8,Jal E.8ORCID,Lüning J.8,Jaouen N.9,Giovannetti G.10,Calegari F.310,Tao Z.11,Baltuška A.1,Légaré F.2,Balčiūnas T.16ORCID

Affiliation:

1. TU Wien

2. Institut National de la Recherche Scientifique

3. Universität Hamburg

4. Paul Scherrer Institute

5. few-cycle, Inc.

6. Université de Genève

7. Université de Lorraine

8. Sorbonne Université

9. Synchrotron SOLEIL

10. Deutsches Elektronen-Synchrotron DESY

11. Fudan University

Abstract

Development of ultrafast table-top x-ray sources that can map various spin, orbital, and electronic configurations and reordering processes on their natural time and length scales is an essential topic for modern condensed matter physics as well as ultrafast science. In this work, we demonstrate spatiotemporally resolved resonant magnetic scattering (XRMS) to probe the inner-shell 4d electrons of a rare-earth (RE) composite ferrimagnetic system using a bright > 200 e V soft x-ray high harmonic generation (HHG) source, which is relevant for future energy-efficient, high-speed spintronic applications. The XRMS is enabled by direct driving of the HHG process with power-scalable, high-energy Yb laser technology. The optimally phase-matched broadband plateau of the HHG offers a record photon flux ( > 2 × 1 0 9 p h o t o n s / s / 1 % bandwidth) with excellent spatial coherence and covers the entire resonant energy range of RE’s N 4 , 5 edges. We verify the underlying physics of our x-ray generation strategy through the analysis of microscopic and macroscopic processes. Using a CoTb alloy as a prototypical ferrimagnetic system, we retrieve the spin dynamics, and resolve a fast demagnetization time of 500 ± 126 f s , concomitant with an expansion of the domain periodicity, corresponding to a domain wall velocity of 750 m / s . The results confirm that, far from cross-contamination of low-energy absorption edges in multi-element systems, the highly localized states of 4 d electrons associated with the N 4 , 5 edges can provide high-quality core-level magnetic information on par with what can be obtained at the M edges, which is currently accessible only at large-scale x-ray facilities. The analysis also indicates the rich material-, composition-, and probing-energy-dependent driving mechanism of RE-associated multicomponent systems. Considering the rapid emergence of high-power Yb lasers combined with novel nonlinear compression technology, this work indicates potential for next-generation high-performance soft x-ray HHG-based sources in future extremely photon-hungry applications on the table-top scale, such as probing electronic motion in biologically relevant molecules in their physiological environment (liquid phase), and advanced coherent imaging of nano-engineered devices with 5 8 n m resolution.

Funder

Deutsche Forschungsgemeinschaft

Fonds de recherche du Québec – Nature et technologies

Natural Sciences and Engineering Research Council of Canada

Shanghai Municipal Science and Technology Basic Research

National Key Research and Development Program of China

National Natural Science Foundation of China

Institut national des sciences de l’Univers

Agence Nationale de la Recherche

Austrian Science Fund

Marie Sklodowska-Curie

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3