Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber

Author:

Xiang ShuiyingORCID,Shi Yuechun12,Guo Xingxing,Zhang Yahui,Wang Hongji2,Zheng Dianzhuang,Song Ziwei,Han Yanan,Gao Shuang,Zhao Shihao,Gu Biling,Wang Hailing3,Zhu Xiaojun4ORCID,Hou Lianping5ORCID,Chen Xiangfei2,Zheng Wanhua3ORCID,Ma Xiaohua,Hao Yue

Affiliation:

1. Yongjiang Laboratory

2. Nanjing University

3. Chinese Academy of Sciences

4. Nantong University

5. University of Glasgow

Abstract

Photonic neuromorphic computing has emerged as a promising approach to building a low-latency and energy-efficient non-von Neuman computing system. A photonic spiking neural network (PSNN) exploits brain-like spatiotemporal processing to realize high-performance neuromorphic computing. However, the nonlinear computation of a PSNN remains a significant challenge. Here, we propose and fabricate a photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber (FP-SA). The nonlinear neuron-like dynamics including temporal integration, threshold and spike generation, a refractory period, inhibitory behavior and cascadability are experimentally demonstrated, which offers an indispensable fundamental building block to construct the PSNN hardware. Furthermore, we propose time-multiplexed temporal spike encoding to realize a functional PSNN far beyond the hardware integration scale limit. PSNNs with single/cascaded photonic spiking neurons are experimentally demonstrated to realize hardware-algorithm collaborative computing, showing the capability to perform classification tasks with a supervised learning algorithm, which paves the way for a multilayer PSNN that can handle complex tasks.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference54 articles.

1. Towards spike-based machine intelligence with neuromorphic computing

2. Networks of spiking neurons: The third generation of neural network models

3. A Mini Review of Neuromorphic Architectures and Implementations

4. Schuman C. D. Potok T. E. Patton R. M. Birdwell J. D. Dean M. E. Rose G. S. Plank J. S. , “ A survey of neuromorphic computing and neural networks in hardware ,” arXiv arXiv:170506963 ( 2017 ).

5. Physics for neuromorphic computing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3